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Abstract. Scene analysis, the process of converting sen-

sory information from peripheral receptors into a represen-

tation of objects in the external world, is central to our

human experience of perception. Through our efforts to

design systems for object recognition and for robot naviga-

tion, we have come to appreciate that a number of common
themes apply across the sensory modalities of vision, audi-

tion, and olfaction; and many apply across species ranging

from invertebrates to mammals. These themes include the

need for adaptation in the periphery and trade-offs between

selectivity for frequency or molecular structure with reso-

lution in time or space. In addition, neural mechanisms

involving coincidence detection are found in many different

subsystems that appear to implement cross-correlation or

autocorrelation computations.

Introduction

As we walk in a busy city or even a pristine forest, our

senses are bombarded by signals from many sources. The

acoustic signals entering our ears are a mixture of sounds

produced by many sources as well as innumerable echoes.

The photons reaching our retina have been reflected off a

complicated montage of clothing, faces, automobiles, and

buildings or perhaps off a mixture of leaves, stems, insects,

birds, soil, and flowers. Likewise, the molecules reaching

our olfactory epithelium may be a mixture of burnt hydro-
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carbons, perfume, and the smell of decaying trash or a

combination of fragrances from flowers, musk from ani-

mals, and byproducts of the breakdown of leaves. Werefer

to the problem of interpreting this jumble of sensory input

and relating it to the physical world as scene analysis.

Many of the current ideas about scene analysis in general

started with experimental and theoretical work on vertebrate

vision. David Mart (1982) introduced a conceptual frame-

work that spanned the entire range of issues from perception

down through the physiological mechanisms to the actual

underlying computations. The core idea is that sensory

systems carry out specific computations that can be de-

scribed mathematically, and that if these computations are

understood, then they can be implemented as computer

programs or in electronic hardware.

Our own approach to designing artificial systems for

scene analysis follows Marr's lead. We start with physio-

logically based models that replicate the responses of the

sensory receptors and neural structures that appear to be

involved with the early stages of sensory processing. These

models are then further abstracted to a form in which they

can be used as the starting point for the design of very

large-scale integrated circuits (VLSI). The VLSI circuits,

after fabrication, are then integrated with appropriate sen-

sors, and the outputs are fed to a microprocessor for tasks

such as grouping, object localization, and object classifica-

tion.

Visual Scene Analysis

Visual scene analysis in mammals is believed to take

place through a series of parallel pathways (Fig. 1 ). The

image projected by the lens onto the retina is transduced by

photoreceptors, and then contrast is enhanced by neural

processing before the visual information is split into spe-

cialized pathways that appear to extract important features
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Figure 1. Visual feature analysis consists of first transducing the light

projected onto the photoreceptor array and enhancing the contrast of the

projected image. This is followed by parallel pathways of feature extrac-

tion, the outputs of which are then processed to group related elements to

form visual objects.

such as distance, orientation, velocity, color, and size (Marr,

1982). Individual regions of the visual image are analyzed

for these different features, and then selected portions are

grouped together through selective attention to form visual

objects that can be identified.

Similar processes may also be taking place in inverte-

brates. For example, cells from the third optic ganglion of

dragonflies respond selectively to different target classes

with properties that are remarkably similar to those of cells

from the mammalian visual cortex (O'Carroll, 1993). Also,

bees like mammals can recognize a familiar shape un-

der a variety of viewing conditions regardless of whether it

is initially sensed by color contrast, luminance contrast, or

motion contrast (Zhang ct ai, 1995).

The visual system must be able to cope with the large

changes in ambient light level that take place due to time of

day, presence or absence of clouds, and moving in and out

of the shade. Even with fixed lighting conditions, some parts

of the visual scene may be brightly lit while others may be

in the shade. The image projected onto a receptor array is

the product of the illumination falling upon the objects

within the visual scene, multiplied by the reflectivities of

these objects. Since it is the reflectivity (both overall mag-
nitude and spectrum) that provides the useful information

about object identity, the visual system needs a method to

minimize the effects of varying illumination.

These illumination problems must be dealt with in the

first stages of processing, before object formation can take

place. The large changes in ambient light level appear to be

handled at the receptor level through adaptation. Adaptation

is a process whereby the sensitivity of the photoreceptor

depends on the time-averaged light level. In biological

photoreceptors, biochemical processes provide the needed

automatic gain control. The outputs of small groups of

photoreceptors are then combined so as to enhance the

differences in reflectivity of objects within the scene by

using a "center-surround" organization (Fig. 2, column I).

This is done by combining an excitatory input from a

receptor or small cluster of receptors with inhibitory inputs

from the surrounding neighbors (on-center receptive field)

or by combining an inhibitory input from a receptor or

cluster with excitatory inputs from the surrounding neigh-

bors (off-center receptive field). Mathematically, the com-

bination of adaptation and center-surround organization is

equivalent to performing the combination of local normal-

ization and a two-dimensional second spatial derivative on

the output of the receptor array. This process has the effect

of emphasizing contrast boundaries in the image. The spa-

tial extent of the receptors contributing to the receptive field

can be varied at the design stage to achieve different degrees

of resolution (image smoothing). Alternatively, the scene

can be processed by parallel pathways each with a different

resolution. If appropriate weights are used for the excitation

and inhibition, then the center-surround spatial filters can be

approximated mathematically as Gabor functions (Weldon

and Higgins. 1999). The multi-resolution approach can be

thought of as taking a two-dimensional wavelet transform of

the image (Porat and Zeevi, 1989).

Distance information is not available to the visual system

directly, because the external three-dimensional world is

mapped onto a two-dimensional array of receptors. If a

three-dimensional internal representation is needed, say for

navigational purposes, then the third dimension must be

synthesized from the information available from the recep-

tors. If the system has two eyes with overlapping visual

fields, then differences due to parallax between the images

from the two eyes can be exploited (binocular disparity) to

estimate distance; otherwise, vergence or more subtle cues

must be used. To estimate binocular disparity, the visual

system appears to perform a spatial cross-correlation be-

tween corresponding regions of the two retinas (Marr.

1982).

Spatial cross-correlation is also used to detect motion.
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Figure 2. Orientation processing consists of combining the outputs of cells with center-surround organiza-

tion (column I) to create oriented receptive fields (column II). These oriented receptive fields are then combined

to form oriented edge detectors (column III).

Coincidence detection between the output of a cell and the

delayed outputs of other cells with nearby receptive fields is

mathematically equivalent to computing the spatial cross-

correlation between the current visual frame and a previous

visual frame on a region-by-region basis.

Orientation processing involves detecting lines and edges

and estimating their angular orientation. Hubel and Wiesel

(1962), working with cat visual cortex, showed that detec-

tion of oriented edges can be accomplished by a sequence of

processing stages that combine the outputs of groups of

cells with similar center-surround characteristics. By using

groups of cells arranged as short linear arrays, short linear

segments of light or dark can be detected (Fig. 2, column II).

Different arrays have different orientations (orientation tun-

ing), so that all possible edge segments within a region can

be detected. If we then combine the output of pairs of these

arrays that are slightly offset from each other and have the

same orientation but with one array being of the "on" type

and the other being of the "off type, we have a system that

detects edge segments between areas of different reflectivi-

ties (Fig. 2, column III). This process can be performed a

second time to detect line segments. Higher-level process-

ing can then be used to group the edge or line segments into

longer lines and arcs (Pasupathy and Connor, 1999).

Wehave implemented this type of processing in silicon

by designing a set of integrated circuits that implement the

processing illustrated in Figure 2 (Hinck and Hubbard,

1999). Wedo not have space here to go into the details of

the silicon implementation, but one significant difference

between the biological and silicon system must be men-

tioned. In biological systems, the information between pro-

cessing units (cells) is carried by axons that are self routing;

in other words, they can work their way through the nervous

tissue and find their targets. With silicon processing sys-

tems, the wiring problem becomes serious. The processing

described within a single column of Figure 2 only requires

communication between nearby elements on the chip. How-

ever, when we need to move information from one process-

ing level or chip to another (from one column to another in

Fig. 2), then we run into problems due to the sheer number

of wires involved. To reduce this bottleneck, a technique

known as address event representation (AER) is used (Boa-

hen, 2000). Whena silicon cell is "excited," it broadcasts its

address (identity) to all listeners, which may be a one-to-one

or a one-to-many mapping. Each broadcast event is equiv-

alent to the production of a single action potential (spike) in

the biological system, and given the bandwidth (speed) of

the circuitry we have the ability to transmit the identity of

all the spikes from all the cells on a chip. Because the

processing is taking place in real time, there is no need to

record a time stamp for the events. For simulations that do

not run in real time, each event may need both a time stamp
and an address.

With AER, signaling takes place only if a spike is gen-

erated; this minimizes power consumption because, for a

single cell, spikes are relatively rare events. This minimi-

zation of power consumption is important, especially for

small robots (as well as for biological systems), since low

power consumption allows operation for longer periods of

time without replenishment of energy stores.
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Auditory Scene Analysis

A major challenge in auditory scene analysis is that

acoustic signals from different sources can overlap in direc-

tion, frequency, and time. We believe that biological sys-

tems meet this challenge by dividing up the received signals

in frequency and time and through the use of appropriate

grouping principles enhance the signal-to-noise ratio for

individual sources to the point where the bearing and iden-

tification of the source can be determined. In many appli-

cations, both transient and long-duration signals are of in-

terest. In auditory scene analysis, each frequency band can

be analyzed for the presence of specific features, and then

the grouping rules can be used to combine information from

selected frequency bands to produce the features vector that

represents an auditory object.

Audition, unlike vision, has no method by which even

two of the three physical dimensions of the external acoustic

world can be projected directly onto the receptor array. To

determine the direction of a sound source, one either needs

to compare signals acquired by directional ears (micro-

phones) with different orientations or compare measure-

ments of pressure taken at different locations in space. In the

latter case, the ears or microphones must be spaced suffi-

ciently that the time delay due to the speed of sound is large

enough to be sensed or measured. If only two ears or

microphones are used, then directional ambiguities are

present, but these can generally be resolved through rotation

of the head or microphone array. The third dimension

(source distance) is much more difficult to estimate in

audition. Experiments with human listeners suggest that the

ratio of direct to reverberant sound energy may be an

important distance cue. How this ratio might be estimated is

not clear.

Each frequency channel is analyzed in parallel through

the computation of multiple features (Fig. 3). These features

are likely to be similar for frequency channels that contain

signals from the same sound source and are likely to differ

for signals from different sound sources. For example, the

differences in time delay between the arrival of the signals

(interaural time differences, ITD) as well as differences in

intensity (interaural intensity differences, IID) at two sen-

sors will be similar across frequency channels for a single

source because these features depend on source direction.

Frequency components with similar onsets, offsets, dura-

tion, and envelope period are also most likely to be from a

single sound source.

For many vertebrates, the head size is sufficient to create

significant time delays (ITD) between the ears that can be

used for localization; at higher frequencies the head shadow

effect is large, producing a significant IID. For very small

animals, especially insects, the ears are very close together,

making ITD estimation via neural circuits impractical, and

the animal's size precludes creating a sound shadow. These

Feature Grouping

Frequency Filtering"and
Transduction

t
Sound

Figure 3. Auditory feature analysis consists of first filtering and trans-

ducing the sound received by the peripheral organs. This is followed by

parallel pathways of feature extraction, the outputs of which are then

processed to group related elements to form auditory objects.

animals appear to use mechanical or acoustic means, or

both, to detect the subtle pressure differences between the

two sides of their body (Michelsen, 1998).

As was the case for visual processing, the final step

before auditory source identification is the grouping process

(Bregman, 1990). In each of the features maps described

above, timing information is preserved. This enables the

grouping process to use common bearing, as determined by

the ITD and IID maps, and synchrony across maps as the

major cues for grouping specific components together. This

grouping process results in a simplified set of features that

includes target direction, the major peaks in the target signal

spectrum, and temporal features such as the period of the

signal envelope. This set of features can then be compared
to stored signatures to complete the identification process.

Signatures in this context can be hardwired (acquired

through evolution at the species level), learned through

experience at the individual level, or derived from a com-

bination of the two methods.

If the system is hardwired, then it is possible to imple-
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ment the entire analysis/tracking system with simple cir-

cuits. For example, the Webb and Scutt (2000) model of

cricket phonotaxis implements pattern recognition and

source localization with a system comprising two receptors

followed by four neurons. The pattern of interest in this case

is the mating call of the male, which is characterized by a

limited range of carrier frequencies and a limited range of

syllable repetition intervals (SRI) (modulation periods). Fil-

tering for the appropriate carrier frequencies takes place in

the hearing organ, and subsequent filtering for SRI takes

place using a pair (one for each ear) of output neurons that

act as lowpass filters, followed by another pair of neurons

that act as a highpass filters. Source localization is accom-

plished by using directional ears and a combination of

excitation and inhibition in the same neurons that perform

the highpass filtering.

For auditory scene analysis, it is essential that the filters

that perform the frequency separation be designed to have

impulse responses that are compact both in frequency and

time. The performance measure commonly used to describe

this feature is the time-bandwidth product. Simple, single

mode resonances, although narrow in frequency, do not

have good temporal performance and hence do not have

good time-bandwidth products. The impulse response that

achieves the theoretical time-bandwidth product limit is a

sinusoid with a Gaussian envelope (Gabor function). Such

an impulse response is physically unrealizable, but it is

possible to combine multiple resonances to create a re-

sponse that comes close to the ideal. Also, for a general

purpose signal processing system, it is generally better to

use filters with a constant ratio of bandwidth to center

frequency (constant Q) rather than a constant bandwidth

like that obtained with a Fourier transform. The widespread
use of approximately constant-Q filtering across the ears of

many species ranging from bush crickets (Hoy, 1992) to

mammals (Javel, 1986) suggests that this approach offers

significant survival value. The use of a constant-Q filter

bank is very similar mathematically to taking a wavelet

transform of the acoustic time signal. It should be noted that

most of the acoustic frequencies of biological significance

are higher than what most cells can follow, so the filtering

is generally done mechanically before detection by the

receptor cells. The number of frequency channels may vary

from very few in insects (Michelsen, 1992) to hundreds in

many vertebrates (Echteler el al.. 1994).

Typically this filtering process is implemented in silicon

using a cascade of second-order filters with progressively

lower resonant frequencies. This cascade is intended to

simulate the traveling wave of the mammalian cochlea,

which starts in the basal (high-frequency) end of the cochlea

and propagates towards the apical (low-frequency) end. For

this purpose, subthreshold circuits have been most com-

monly used (Mead, 1989: Fragniere el uL. 1997; Sarpeshkar
et al.. 1998).

Like the visual system, the auditory system must also deal

with a wide range of signal levels. Here again, adaptation

(automatic gain control) plays an important role. In mam-
malian auditory systems the adaptation is specific to each

frequency channel (Javel, 1986). In insects, responses of

neurons in the central nervous system can also exhibit

adaptation (e.g.. see Lewis, 1992).

Unlike the visual system, however, the auditory system is

processing a very rapidly changing signal, one that often

changes much faster than the biological hardware can fol-

low. To circumvent the problem of following high-fre-

quency signals, the receptor cells (hair cells) act as soft

half-wave rectifiers (Mountain and Hubbard, 1996) so that

at high frequencies they respond to the envelope of the

acoustic signal rather than to the fine structure of the signal.

In the auditory system, temporal cross-correlation and

autocorrelation-like processing is believed to play an im-

portant role (Colburn, 1996; Lyon and Shamma, 1996). In

vertebrates, the time delay between the two ears (IID) is an

important cue for localization. The combination of neural

delay lines and coincidence detection is used to cross-

correlate the signals from the two ears for each frequency

channel. Periodicity analysis is believed to take place also

using delays and coincidence detection. Periodicity analysis

no doubt plays an important role for many species from

insects to man, because so many communication sounds

involve periodic amplitude modulation (AM). Figure 4 il-

lustrates time waveforms in which AM is a prominent
feature for a cricket call (panel A) and for a human vowel

(panel C). Panels B and D show the results of spectral

analysis using a constant-Q filter bank, and except for center

frequency and modulation rate, the AMsignals are remark-

ably similar.

Olfactory Scene Analysis

By analogy to the visual and auditory systems, we refer to

the problem of identifying and localizing odor sources in

complex environments as olfactoiy scene analysis. Unlike

vision and hearing, in which the signal propagates via wave

phenomena, olfaction is characterized by mass transport by

currents in water or air and the associated turbulence found

in these media (Grasso, 2001). No direct information about

source location is present in the received signal, but approx-

imate direction can be estimated by sensing wind or water-

flow direction. The only way a source can be located with

any certainty is to trace the odor plume back to its source.

In general, individual odor sources release mixtures of

compounds into the environment, and the signal at the

sensory organ is the result of the mixing of turbulent plumes

from multiple sources. Due to the nature of turbulent trans-

port, the plume produced by a single odor source is made up

of a series of patches or filaments distributed within the

plume; these move past the olfactory organ, creating a series
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Figure 4. Spectral analysis of animal communication sounds. Time

waveforms for a cricket call (panel A) and for a human vowel (panel C) are

plotted along with the results of spectral analysis using a constant-Q filter

hank (panels B and D).

of odor pulses at the receptors with random arrival times,

durations, and amplitudes (Moore and Atema, 1991). The

patchy nature of odor concentration signals can be seen in

the two concentration signals shown in Figure 5. In a

multi-source environment, the odor pulses from one source

will be intermixed with pulses from other sources. In such

an environment, the average concentration of a compound is

not a useful feature for olfactory scene analysis. Even if

only one odor source is present, the statistical nature of the

plume is such that several minutes of signal averaging are

necessary to get an accurate estimate of average concentra-

tion. However, behavioral experiments in plumes of this

sort indicate that animals make olfactory decisions on the

order of a few seconds (Basil and Atema. 1994).

Like the visual and auditory systems, the olfactory sys-

tem must be able to cope with wide ranges in signal (con-

centration) level. Olfactory receptors, like their counterparts

in the other sensory systems, also exhibit adaptation that

adjusts the sensitivity of individual receptors on the basis of

background concentration levels. Olfactory systems have

many different receptor types, ranging from a few dozen in

insects to approximately 1000 receptor types in mammals.

Some receptors, mainly those that have evolved to detect

pheromones, are extremely selective, but most will respond

to a number of different compounds. The higher the selec-

tivity of a receptor, the higher the affinity for the odor

molecule and the slower the release of the odor molecule

after it has bound to the receptor (Lauffenburger and Lin-

derman, 1993). The relationship between high affinity and

slow release comes about because affinity depends on the

ratio of the binding to unbinding rates. The rate of binding

is limited by the rate at which the odorant can access the

binding site, a rate that is similar for all receptors. Affinity,

therefore, varies from receptor to receptor, largely due to

differences in the unbinding rate. This relationship means
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Figure 5. Simulation of how an array of olfactory receptor cells might

respond to the mingling of odor plumes from two different sources. The top

two panels show the concentration signals from the two sources, and the

bottom panel is the response from a simulation of 32 receptors that vary in

their sensitivity to the two odorants.
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that high molecular selectivity leads to poor temporal res-

olution not unlike the trade-off between frequency selec-

tivity and temporal resolution in auditory filters.

Olfactory receptors have been shown to respond rapidly

enough that the temporal characteristics of the concentration

signals could be available to the central nervous system

(Gomez and Atema. 1996). Since most odors are mixtures

and a single olfactory receptor cell can be stimulated by

more than one compound, the odor from a single source will

excite a number of different receptor cells, with the pattern

of excitation varying from one odor mixture to another. In

Figure 5 we simulate how an array of olfactory receptor

cells might respond to the mingling of odor plumes from

two different sources. The top two panels show the concen-

tration signals from the two sources, and the bottom panel is

the response from a simulation of 32 receptors that vary in

their sensitivity to the two odorants. One can see from

Figure 5 that, as in the auditory system, grouping can be

done using temporal cues. In other words, receptors whose

activities co-vary in time are likely to be responding to the

same odor source.

Hardware models of olfactory scene analysis have not

progressed very far due to the lack of sensors with the

combination of appropriate chemical selectivity and fast

temporal responses. Most current experiments are being

done with surrogate odor sources for which fast sensors are

available. The systems used in these experiments are gen-

erally designed to locate the odor source and not to classify

the odor type. Due to the difficulty of accurately simulating

chemical plumes in software, artificial systems for olfactory

scene analysis often involve the use of robots. For example,

we have used an aquatic robot (RoboLobster) that uses

conductivity sensors to locate sources of salt in a freshwater

flume (Grasso et ai, 2000).

Summary and Conclusions

The comparisons of strategies for scene analysis across

the three sensory modalities visual, auditory, and olfac-

tory described above illustrate several common themes

that operate across modalities. For example, we see the

dissection of the sensory signal, its processing in parallel

pathways to extract key features, and then the grouping of

portions of the signal to form perceptual objects. In all three

of these senses, adaptation plays an important role in the

first stages of processing. Fundamental trade-offs such as

spectral versus temporal resolution or molecular selectivity

versus temporal resolution shape peripheral processing. The

mathematical concept of cross-correlation and its neural

counterpart, coincidence detection, show up over and over

again. Webelieve that by comparing strategies for sensory

processing across sensory modalities as well as across many

different species we can derive fundamental principles of

sensory information processing that can be used to design

artificial systems capable of analyzing complex environ-

ments.
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